Knowledge in cloud computing

Nova Service

Following document gives a complete overview of how a nova service works in a openstack private cloud deployment.

Openstack

Following document gives an complete overview of how a Openstack is operated and used in building a private cloud service.

CS1121 CLOUD COMPUTING Introduction to Cloud Computing ,Srm College

Unit I Cloud Computing Fundamentals: Cloud Computing definition, Types of cloud, Cloud services: Benefits and challenges of cloud computing, Evolution of Cloud Computing, usage scenarios and Applications, Business models around Cloud – Major Players in Cloud Computing - Issues in Cloud - Eucalyptus - Nimbus - Open Nebula, CloudSim.

CLOUD SERVICES AND FILE SYSTEM

Unit II Types of Cloud services: Software as a Service - Platform as a Service – Infrastructure as a Service - Database as a Service - Monitoring as a Service - Communication as services - Service providers- Google App Engine, Amazon EC2 - Service providers- Google App Engine, Amazon EC2 - Introduction to MapReduce - GFS - HDFS - Hadoop Framework

Cloud computing material notes.

Cloud Computing (CC) Materials & Notes. CC Unit Wise Lecture Notes and Study Materials in pdf format for Engineering Students. So all students seeking Cloud Computing Book for engineering colleges.

Cloud Computing

It contains an overview on cloud security.

Cloud Computing Notes

Following document contains notes related to the basic concepts of Cloud Computing, explaining different types of cloud environment

google Cloud Platform

Following document contains details related to the the Google cloud Platform and its application use in real day to day life.

soft computing

Introduction to Neuro, Fuzzy and Soft Computing, Fuzzy Sets : Basic Definition and Terminology, Set-theoretic Operations, Member Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Extension Principle and Fuzzy Relations, Fuzzy If-Then Rules, Fuzzy Reasoning , Fuzzy Inference Systems, Mamdani Fuzzy Models, Sugeno Fuzzy Models, Tsukamoto Fuzzy Models, Input Space Partitioning and Fuzzy Modeling. MODULE-II (10 HOURS) Neural networks: Single layer networks, Perceptrons: Adaline, Mutilayer Perceptrons Supervised Learning, Back-propagation, LM Method, Radial Basis Function Networks, Unsupervised Learning Neural Networks, Competitive Learning Networks, Kohonen Self-Organizing Networks, Learning Vector Quantization, Hebbian Learning. Recurrent neural networks,. Adaptive neuro-fuzzy information; systems (ANFIS), Hybrid Learning Algorithm, Applications to control and pattern recognition. MODULE-III (10 HOURS) Derivative-free Optimization Genetic algorithms: Basic concepts, encoding, fitness function, reproduction. Differences of GA and traditional optimization methods. Basic genetic programming concepts Applications., MODULE-IV (10 HOURS) Evolutionary Computing, Simulated Annealing, Random Search, Downhill Simplex Search, Swarm optimizationIntroduction to Neuro, Fuzzy and Soft Computing, Fuzzy Sets : Basic Definition and Terminology, Set-theoretic Operations, Member Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Extension Principle and Fuzzy Relations, Fuzzy If-Then Rules, Fuzzy Reasoning , Fuzzy Inference Systems, Mamdani Fuzzy Models, Sugeno Fuzzy Models, Tsukamoto Fuzzy Models, Input Space Partitioning and Fuzzy Modeling. MODULE-II (10 HOURS) Neural networks: Single layer networks, Perceptrons: Adaline, Mutilayer Perceptrons Supervised Learning, Back-propagation, LM Method, Radial Basis Function Networks, Unsupervised Learning Neural Networks, Competitive Learning Networks, Kohonen Self-Organizing Networks, Learning Vector Quantization, Hebbian Learning. Recurrent neural networks,. Adaptive neuro-fuzzy information; systems (ANFIS), Hybrid Learning Algorithm, Applications to control and pattern recognition. MODULE-III (10 HOURS) Derivative-free Optimization Genetic algorithms: Basic concepts, encoding, fitness function, reproduction. Differences of GA and traditional optimization methods. Basic genetic programming concepts Applications., MODULE-IV (10 HOURS) Evolutionary Computing, Simulated Annealing, Random Search, Downhill Simplex Search, Swarm optimizationIntroduction to Neuro, Fuzzy and Soft Computing, Fuzzy Sets : Basic Definition and Terminology, Set-theoretic Operations, Member Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Extension Principle and Fuzzy Relations, Fuzzy If-Then Rules, Fuzzy Reasoning , Fuzzy Inference Systems, Mamdani Fuzzy Models, Sugeno Fuzzy Models, Tsukamoto Fuzzy Models, Input Space Partitioning and Fuzzy Modeling. MODULE-II (10 HOURS) Neural networks: Single layer networks, Perceptrons: Adaline, Mutilayer Perceptrons Supervised Learning, Back-propagation, LM Method, Radial Basis Function Networks, Unsupervised Learning Neural Networks, Competitive Learning Networks, Kohonen Self-Organizing Networks, Learning Vector Quantization, Hebbian Learning. Recurrent neural networks,. Adaptive neuro-fuzzy information; systems (ANFIS), Hybrid Learning Algorithm, Applications to control and pattern recognition. MODULE-III (10 HOURS) Derivative-free Optimization Genetic algorithms: Basic concepts, encoding, fitness function, reproduction. Differences of GA and traditional optimization methods. Basic genetic programming concepts Applications., MODULE-IV (10 HOURS) Evolutionary Computing, Simulated Annealing, Random Search, Downhill Simplex Search, Swarm optimizationIntroduction to Neuro, Fuzzy and Soft Computing, Fuzzy Sets : Basic Definition and Terminology, Set-theoretic Operations, Member Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Extension Principle and Fuzzy Relations, Fuzzy If-Then Rules, Fuzzy Reasoning , Fuzzy Inference Systems, Mamdani Fuzzy Models, Sugeno Fuzzy Models, Tsukamoto Fuzzy Models, Input Space Partitioning and Fuzzy Modeling. MODULE-II (10 HOURS) Neural networks: Single layer networks, Perceptrons: Adaline, Mutilayer Perceptrons Supervised Learning, Back-propagation, LM Method, Radial Basis Function Networks, Unsupervised Learning Neural Networks, Competitive Learning Networks, Kohonen Self-Organizing Networks, Learning Vector Quantization, Hebbian Learning. Recurrent neural networks,. Adaptive neuro-fuzzy information; systems (ANFIS), Hybrid Learning Algorithm, Applications to control and pattern recognition. MODULE-III (10 HOURS) Derivative-free Optimization Genetic algorithms: Basic concepts, encoding, fitness function, reproduction. Differences of GA and traditional optimization methods. Basic genetic programming concepts Applications., MODULE-IV (10 HOURS) Evolutionary Computing, Simulated Annealing, Random Search, Downhill Simplex Search, Swarm optimization

Cloud computing - DeskV and AppV

In this PDF there is detailed concepts and examples related to Cloud computing regarding to DeskV and AppV.You will be able to learn how to use in daily life.